Rugby has the highest risk per player/hour of injury of all sports. The shoulder comprises 20% of all rugby injuries being the second most injured joint after the knee. 35% of all injuries of the shoulder are recurrent injuries and if a player has sustained an injury of one shoulder there is a higher likelihood of that player sustaining an injury of the other shoulder. The maneuver most strongly associated with shoulder injuries is the tackle accounting for 49% of injury episodes in rugby matches.

The shoulder itself mechanically is an inherently unstable joint. Traditionally we think of the shoulder as a seal sitting on an unstable platform and balancing a ball on its nose. The unstable platform being the scapular thoracic joint and the seal balancing the ball being the glenohumeral joint.

In rugby players this inherently unstable situation is stabilized significantly by well-developed surrounding musculature; thirteen muscles make up the shoulder joint and this biomechanical protection provides a significant stability and protection to the vulnerable and potentially unstable glenohumeral joint. Another part of the important stabilizing affect comes from the chuck block effect of the labrum; in well-muscled rugby players this becomes the weak point in shoulder injuries.

From our clinical reviews of treating 211 elite rugby players over 6 years, we have been able to collect a lot of unique data, developed a much better understanding and refine our techniques and outcomes in this unique high-demand group of athletes. Aspects of this data have been published and presented.

Causes of shoulder injuries during

Looking at data in 2008, we found that there were two common mechanisms of injury:

1. Forced abduction and external rotation (ABER)

These injuries make up 32% of injuries to the shoulder during rugby. These occur either in a tackle situation or landing with the ball outstretched (usually scoring a try).

Rugby shoulder injuries

Interestingly, the number of true dislocations was small, but the number of labral tears was very high, suggesting subclinical subluxations. It is likely that the large muscle bulk prevents complete dislocation in rugby players in most cases. The true dislocations were in the ABER group and this group had more Bankart lesions and partial cuff tears. There was also a very high incidence of bony Bankart lesions (26%). This is much higher than seen in other age-matched groups with traumatic shoulder dislocations.

2. Direct lateral blow with the arm at the side (Direct Impact)

These are injuries in which the shoulder was internally rotated. This makes up 32% of shoulder injuries during rugby. This either occurred when being forced to the ground holding the ball, or on direct impact tackling.

Rugby shoulder injuries

The Direct Impact group sustained a complex pattern of shoulder injuries, with a high frequency of SLAP and posterior labral tears. Players reported at the time of injury the feeling of a pop, a dead arm feeling and inability to continue playing that game. Thereafter they often were able to return but not to the same level of play. They have lost confidence in their shoulder, avoiding tackle on the affected side. Clicking and clunking was a common symptom. Another very common symptom was that of pain with bench pressing. The pain was felt particularly on descending or eccentric loading of the biceps.

Rugby shoulder injuries

Try Score Injuries

‘Try Score’ injuries are caused by hyperflexion of the outstretched arm such as when scoring a try. It involves a lever force on the Glenohumeral joint, resulting in rotator cuff tears along with Bankart and anterior capsular tears.

Rugby shoulder injuries Rugby shoulder injuries

Tackler Injuries

The ‘Tackler’ injuries are characterized by extension of the abducted arm behind the player whilst tackling. This mechanism involves a lever force on the glenohumeral joint (GHJ) and can cause GHJ dislocation with Bankart, reverse Bankart and superior labrum anterior-posterior (SLAP) tears.

Shoulder Injuries in rugby

GHJ dislocation 9%
Acute 0
Recurrent 4.5%
Revision 4.5%
Labral Injury 42%
AC Joint ‘Sprain’ 28%
AC Joint Dislocation 7%
Acute 0
Chronic 6%
Rotator Cuff Tear 4.5%
Glenohumeral Arthritis 2%

The labral injury patterns found were complex and much more severe than found in similar injuries sustained by non-rugby players. The injury patterns differed between the two mechanisms above. This is summarised below:

  ABER Direct Impact
Bankart - Soft Tissue 79% 33%
Bankart - Bony 26% 11%
Posterior Labral Tear 11% 50%
SLAP 7% 35%
Partial Cuff Tear 32% 12%

The site of labral tears demonstrated a significant different distribution to that reported in other studies of labral tears. This also differed between the two mechanisms, as shown in the image below:

Labral Tears

How player position impacts shoulder injuries

In rugby union there was a little difference in the injury patterns, except for bony Bankart lesions were significantly more common in the backs. This is probably because they sustained more ABER injuries consistent with the open play and more outstretched tackles and score trying than the forwards.


Rugby shoulder injuries
  1. Plain radiographs (x-rays) - AP and axillary views are essential to help exclude a large bony lesion, particularly large Hill-Sachs Lesions and Bony Bankart Lesions

  2. Ultrasound Scan - this is simple and quick if available in the office and can show a rotator cuff injury, Hill-Sachs lesion and AC Joint injury.

  3. MRI Scan - a standard MRI scan is a reasonable screening tool and can detect major injuries, but is not sensitive enough to detect most labral injuries (which is the most common injury in rugby)

  4. MR Arthrogram - This is the 'gold standard' investigation for sports injuries of the shoulder and is much better at detecting all the common injuries (labral, cuff, bony lesions, etc.). However, it is not 100% accurate and sometimes less accurate than a good clinical examination (e.g. SLAP tears). Below is the data from our own data, comparing MR Arthrogram (MRA) to the arthroscopy findings at surgery:
  Sensitivity Specificity Accuracy
SLAP 0.42 0.92 77%
Rotator Cuff Tear 0.5 0.86 83%
Hill-Sachs Lesion 0.91 0.78 90%
Bankart Lesion 0.85 0.83 86%

How is rugby shoulder treated?

Most of the players sustaining a 'Rugby Shoulder' injury were unable to return to the pre-injury level of play and required surgical repair. Surgery tended to be performed early or mid-season in 64% of the players and towards the end of the season in 36%. All procedures were arthroscopic, except for 16 cases which were open modified Latarjet procedures for glenoid bony deficiency. These cases also had any associated injuries repaired arthroscopically prior to the modified Latarjet procedure.

What to expect after surgery & for rehabilitation ?

After surgery we use an accelerated rugby rehabilitation protocol that we have developed with professional rugby teams. We work closely with the team therapist, conditioning coaches and coach to ensure a safe and rapid return to play. These athletes get a level of support and input that is not available to amateurs and therefore can be progressed more rapidly. Tissue healing is also rapid in athletes like rugby players.

The rehabilitation is based on functional movement patterns and incorporates early sports-specific exercises, in this case rugby. A sling immobilizer is used for less than one week. The first three weeks comprise of closed kinetic chain exercises which incorporate proprioception, core stability and scapula stabilizing exercises. These are done within the safe zone and progressed as tolerated. Perturbation training is introduced after three weeks and functional open chain exercises introduced. Depending on the athletes' progress, resistance exercises are introduced after approximately six weeks, along with skills training. Simulated tackling is started at about two to three months after shoulder surgery. Impact and tackle bag training is not started until the athletes have achieved satisfactory movement, strength, isokinetic and proprioceptive criteria.

We do not put a specific time restriction on return to play. The player must meet specific progressive goals to progress in the rehabilitation process. These goals are both sport and position specific. A player cannot progress unless he has achieved the predetermined goals. The decision to progress is mainly led by the club therapist, in discussion with me. Return to full play for rugby players post shoulder surgery is then a natural progression of recovery rather than a time-determined event.

  Pain Satisfaction (%) Playing at previous level
Pre-op 5 11% 0%
3 months 10 87% 89%
6 months 12 93% 94%

The more significant the injuries and larger the repairs, the longer it took to return to full match play. This is demonstrated below:

Repair Return to Match-Play
SLAP 2.6
Bankart & SLAP 3
Posterior Labrum & SLAP 4.1
Latarjet Procedure 4.6
Rotator cuff repair (large) 4.8
Bankart, posterior & SLAP
(360 degree repair)

Recurrences & Revisions

Over a six-year period the recurrent injury rate was 5.6%. All had sustained a recurrent traumatic event. Of these, four patients had a glenoid bony injury with bone loss and required a modified Latarjet procedure. Two patients had repeat tears of the initial repair site and another two had tears elsewhere, with the initial repair having healed and being intact.


In summary, the typical 'big hit rugby shoulder' involves a big hit, big injury, unable to return to previous level of play, unusual distribution of labral tears without a true dislocation. These generally require early fixation. The results of surgery show a >90% return to full activity within 6 months.

The Grumbling AC Joint

The next type of 'rugby shoulder' is what I term the 'Grumbling AC Joint'. In our review of the rugby shoulder injuries, the second most common shoulder complaint was AC joint pain, making up 28% of our population. The typical history is that of repetitive minor injuries to the shoulder. Pain is felt with extreme overhead activities. Clinically the Scarf or cross-chest deduction test is positive, tenderness over the AC joint itself as well as AC joint compression test being positive. The pathological findings are varied from meniscal tears of the AC joint to AC joint arthritis and Osteolysis of the lateral end of clavicle.

Arthroscopic AC joint excision was undertaken where required.

Our results of 12 professional rugby players, over the one-year period, revealed a mean return to play of 6 weeks following AC joint excision. However, it is worth noting that 10 of the 12 were done at the end of the season, only 2 done mid-season. With this type of injury players are normally able to play through the season with the aid of physiotherapy and AC joint injections, often attending for their surgery at the end of the season. The initial treatment in-season is injection and rehabilitation with plan to perform AC joint excision at the end of the season, if required.